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Abstract

In a previous paper [J. Phys. A: Math. Gen. 35 (2002) 10467] an Euler angle parameterization
for SU(N) was given. Here we present a generalized Euler angle parameterization forU(N). The
formula for the calculation of the volume forU(N),CPN as well as otherSU(N) andU(N) cosets,
normalized to this parameterization, will also be given. In addition, the mixed and pure state product
measures forN-dimensional density matrices under this parameterization will also be derived.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Having produced an Euler angle parameterization forSU(N) we now turn our attention
to explicitly writing down the Euler parameterization for the unitary group,U(N) (which
was hinted at in theSU(N) work of [1,2]). Recall thatU(N) is a subgroup ofGL(N,C) =
GLN(C), the group of all complexN × N matrices with non-vanishing determinant and
requiring 2N2 parameters to represent. In this manner we can defineSU(N) to be a subgroup
of U(N), requiringN2 − 1 parameters to represent, by adding the extra condition that any

∗ Corresponding author.
E-mail addresses:tilma@riken.jp (T. Tilma), sudarshan@physics.utexas.edu (E.C.G. Sudarshan).

0393-0440/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.03.003



264 T. Tilma, E.C.G. Sudarshan / Journal of Geometry and Physics 52 (2004) 263–283

element ofSU(N) has unit determinant. We can therefore expect that not only will the Euler
parameterization ofU(N) be easy to produce but also the group volume, once we exploit
some simple group relationships betweenSU(N) andU(N).

The importance of such a parameterization and its corresponding volume equation, be-
yond that discussed in[3], is that it gives us the ability to calculate the measures and volumes
for generalN-dimensional pure and mixed-state density matrices, as well as the volumes
of the manifolds of operations on pure and mixed states which produce entangled and sep-
arable states (which are directly related to the volume of separable and entangled states)
without having to resort to extensive numerical computations as in[4,5].

2. Euler parameterization of U(N)

The idea behind the parameterization ofU(N) is straightforward. Referring to our pre-
vious work[1], for notations and details, as well as to Nakahara[6], Sattinger and Weaver
[7], and others we know the following relationship holds betweenSU(N), U(N) andCPN :

CPN = SU(N + 1)

U(N)
= SU(N + 1)

SU(N) × U(1)
. (2.1)

TheU(1) in the denominator of the second equality is theU(1) element from theSU(N+1)
group in the numerator, which we know from[1,2] to be:

U(1) ≡ U(1)SU(N+1) = eiλ
(N+1)2−1β. (2.2)

Using theSU(N) parameterization work done previously[1], we can write down the Euler
parameterization ofU(N) quite easily.

Recall from[1,2,7,8]we know we can write down a semi-direct sum for the Lie algebra
for SU(N) as

L(SU(N)) = L(K) ⊕ L(P), (2.3)

which yields a decomposition of the group,

V = K · P, (2.4)

whereV ∈ SU(N). From this work, we also know thatL(K) is comprised of the generators
of theSU(N − 1) subalgebra ofSU(N), and thereforeK will be theU(N − 1) subgroup
obtained by exponentiating this subalgebra,{λ1, . . . , λ(N−1)2−1}, combined withλN2−1 and
thus can be written as (see[1,2,9] for example):

K(N − 1) = [SU(N − 1)] · eiλ
N2−1φ, (2.5)

where [SU(N − 1)] represents the(N − 1)2 − 1 term Euler angle parameterization of the
SU(N − 1) subgroup.

We are now ready to look at theU(N) group in general. For aU ∈ U(N) we have from
Eqs. (2.1) and (2.5)as well as from[1]:

U ≡ K(N) = [SU(N)] · eiλ
(N+1)2−1β, (2.6)
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where

[SU(N)] =

 ∏

2≤k≤N

A(k, j(N))


 ·


 ∏

2≤k≤N−1

A(k, j(N − 1))


 · · · (A(2, j(2)))

× eiλ3αN2−(N−1) · · · eiλ
(N−1)2−1αN2−2 eiλ

N2−1αN2−1

=
∏

N≥m≥2


 ∏

2≤k≤m

A(k, j(m))




× eiλ3αN2−(N−1) · · · eiλ
(N−1)2−1αN2−2 eiλ

N2−1αN2−1,

A(k, j(m)) = eiλ3α(2k−3)+j(m) eiλ
(k−1)2+1α2(k−1)+j(m) ,

j(m) =
{

0, m = N,∑
0≤l≤N−m−1 2(m + l), m �= N.

(2.7)

3. Volume of U(N)

From[1,10] the volume ofSU(N) is known to be

VSU(N) = 2(N−1)/2π(N−1)(N+2)/2
√
N

N−1∏
k=1

(
1

k!

)
. (3.1)

If we useEq. (2.2)then from[1] we can define the following volume forU(1)SU(N+1):

VU(1)SU(N+1) ≡ VU(1)λ
(N+1)2−1

= (N + 1) ∗
∫ π

√
2/(N+1)((N+1)−1)

0
dα(N+1)2+1

= π

√
2(N + 1)

N
. (3.2)

FromEq. (2.6)we can write

VU(N) = VSU(N) × VU(1)λ
(N+1)2−1

(3.3)

and thus usingEqs. (3.1) and (3.2)we have

VU(N) = 2(N−1)/2π(N−1)(N+2)/2
√
N

N−1∏
k=1

(
1

k!

)
∗ π

√
2(N + 1)

N

= 2N/2πN(N+1)/2
√
N + 1

N−1∏
k=1

(
1

k!

)
(3.4)

for N ≥ 2. Note that whenN = 1 we generate the volume for theU(1)SU(2) group element.
Since there can be many differentU(1)’s with different volumes, the fact thatU(N), when
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N = 1 gives theSU(2) group element volume demands that we limit the use ofEq. (3.4)
to N ≥ 2.

With this information in hand, we can now look at the differential volume elements, and
corresponding volumes of the full range ofSU(N) andU(N) cosets that are of interest in
physics, beginning with the fundamental manifolds which define pure and mixed states.

4. Differential volume elements for pure and mixed states

Now that we have an Euler angle parameterization for bothSU(N) andU(N), forN ≥ 2,
we are now in a position to look at the group representations of pure and mixed states in
terms of our parameterizations.

In general, the manifold of pure states is given by the sequence of maps:

U(N − 1) �→ SU(N) �→ CPN−1. (4.1)

These are related to the “Grassmannian” manifolds, which are defined as

CPN−1 ≡ G(N,1) = U(N)

U(1) × U(N − 1)
= SU(N)

U(N − 1)
. (4.2)

On the other hand, the manifold for mixed states (here for rankN density matrices with
non-degenerate and non-singular eigenvalues) is given by[11,12]:

Mms = ΩN−1 × SU(N)

(U(1))N−1
, (4.3)

whereΩN−1 can be seen as the(N − 1)-dimensional solid angle (with appropriate ranges)
derived from the eigenvalues of a suitably parameterized(N − 1)-dimensional sphere (see
[3,12]), and the factor(U(1))N−1 is the maximal torus spanned by the exponentiation of
the Cartan subalgebra of the group:

(U(1))N−1 = U(1)SU(2) × U(1)SU(3) × · · · × U(1)SU(N)

= U(1)λ3 × U(1)λ8 × · · · × U(1)λ
N2−1

. (4.4)

One may also notice thatMms is stratified by noting that

SU(N)

(U(1))N−1
∼= CPN−1

� CPN−2
� · · · � CP1, (4.5)

where� denotes the (possibly) non-trivial topological product of the spaces. These cosets
are called flag manifolds and the given topological product follows from the fact that the
SU(N) groups are products of odd-dimensional spheres (see[3] and references within).

Now, in order to do any “physically” meaningful calculation on either manifold we require
their measures; measures that can be derived by using the Euler angle parameterizations of
SU(N) andU(N). It is to this question that we now turn our attention to.
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4.1. Pure state measure

We know that pure states are inCPN and from the previous sections that

CPN = SU(N + 1)

U(N)
= SU(N + 1)

SU(N) × U(1)SU(N+1)
. (4.6)

Using the differential volume element forSU(N) from [1] we can immediately write down
the pure state measure as

dVps= dVSU(N+1)

dVSU(N) × dVU(1)SU(N+1)

= KSU(N+1) dα(N+1)2−1 · · · dα1

KSU(N) dαN2−1 · · · dα1 × dα(N+1)2−1

=

 ∏

2≤k≤N+1

Ker(k, j(N + 1))


 dα2N · · · dα1 (4.7)

where from[1]:

Ker(k, j(N + 1)) =




sin(2α2), k = 2,

cos(α2(k−1))
2k−3 sin(α2(k−1)), 2 < k < N + 1,

cos(α2N) sin(α2N)2N−1, k = N + 1,

(4.8)

with the following ranges:

0 ≤ α1 ≤ π and 0≤ α2 ≤ π

2
, 0 ≤ α2j ≤ π

2
,

0 ≤ α2j−1 ≤ 2π for 2 ≤ j ≤ N. (4.9)

Note that these ranges are from thecoveringranges forSU(N + 1) and not fromSU(N +
1)/ZN+1 which are used to calculate the invariant volume forSU(N+1) (see the appendices
in [1] for more details). On the other hand, onecoulduse theSU(N + 1)/ZN+1 ranges:

0 ≤ α2j ≤ π

2
, 0 ≤ α2j−1 ≤ π for 1 ≤ j ≤ N (4.10)

but then one would need to add a normalization factor of 2N−1 in front of the product in
Eq. (4.7)in order to generate the correct volume forCPN .

4.1.1. Example calculation: two qubit pure state measure
t is interesting to note thatEq. (4.7)for N = 3 is equivalentto the “natural” measure

(referred to in[2]) derived from the Hurwitz parameterization (see[13] and references
within). To begin, we define a general vector of a random four-dimensional unitary matrix
U(4) as

|Ψ(η)〉 =




cos(θ3)

sin(θ3) cos(θ2)eiφ3

sin(θ3) sin(θ2) cos(θ1)eiφ2

sin(θ3) sin(θ2) sin(θ1)eiφ1


 , (4.11)
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where 0≤ θi ≤ π/2 and 0≤ φi ≤ 2π (i = 1,2,3), andη = {θi, φi}. From this vector one
can calculate the corresponding Fubini-Study metric (here given as in[14]):

gµν = 1
2(Fµν + Fνµ), (4.12)

where in this case

Fµν(η) =
〈

∂

∂ηµ
Ψ(η)|(�4 − |Ψ(η)〉〈Ψ(η)|)| ∂

∂ην
Ψ(η)

〉
, (4.13)

the square root of the determinant of which yields the invariant measure forCP3 under this
representation:

dVps= Det[
√
g]

= cos(θ1) sin(θ1) cos(θ2) sin(θ2)
3 cos(θ3) sin(θ3)

5 dθ3 dφ3 · · · dθ1 dφ1.

(4.14)

Theequivalentaspect of our statement comes in when one explicitly evaluatesEq. (4.7)for
N = 3:

dVps= dVSU(4)

dVSU(3) × dVU(1)SU(4)

=

 ∏

2≤k≤4

Ker(k, j(4))


 dα6 · · · dα1

= sin(2α2) cos(α4)
3 sin(α4) cos(α6) sin(α6)

5 dα6 · · · dα1

= 2 sin(α2) cos(α2) cos(α4)
3 sin(α4) cos(α6) sin(α6)

5 dα6 · · · dα1, (4.15)

where the ranges on theαi’s are fromEq. (4.9). Obviously there’s some contradiction
between this measure and the one given inEq. (4.14)but any concern it may raise should
be eliminated in the following work.

To begin we note thatEq. (4.15)can also be derived in the following manner that follows
the arguments found in[15]. First we define a pure state as

ρ′
d =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 = 1

4
(�4 −

√
6λ15) (4.16)

and then apply aU ∈ SU(4) to yield

ρ = Uρ′
dU

† = 1
4(�4 −

√
6Uλ15U

†). (4.17)

Recalling that a general two qubit density matrix has the form:

ρ = |Φ(α)〉〈Φ(α)| = 1
4(�4 +

√
6n · λ) (4.18)

we can therefore solve for the components ofn and in turnΦ(α), via evaluatingnj = Φ†λjΦ
for j = 1, . . . ,15. Doing these calculations yields (dropping an overall multiplicative phase
term dependent on theλ15 element of the Cartan subalgebra found inU(3)):
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|Φ(α)〉 =




sin(α6) cos(α4) cos(α2)e−i(α1+α3+α5)

− sin(α6) cos(α4) sin(α2)ei(α1−α3−α5)

− sin(α6) sin(α4)e−iα5

cos(α6)


 . (4.19)

Calculating and taking the determinant of the Fubini-Study metric as before but nowunder
this representationyields the following invariant measure forCP3:

dVps = sin(2α2) sin(α4) cos(α4)
3 sin(α6)

5 cos(α6). (4.20)

One can see that|Φ(α)〉 is similar to|Ψ(η)〉 but not equal. Therefore in comparing the two
measures we can only note the following:

(1) The factor of 2 inEq. (4.15)equates to having the range ofα1 run from 0 to 2π
rather than its original range set 0≤ α1 ≤ π given inEq. (4.9)thus allowing one to
conceptuallyequateθi with α2i andφi with a functional form of theα2i−1’s.

(2) Eq. (4.14)can be generalized toCPN (see[13]):

dVps =
N−1∏
k=1

cos(θk) sin(θk)
2k−1 dθk dφk (4.21)

which obviouslydoes nothave the same form asEq. (4.7), but due to the invariance
of the integral:∫ π/2

0
sin(ξ)m cos(ξ)dξ =

∫ π/2

0
sin(ξ) cos(ξ)m dξ (4.22)

doesyield the same invariant volume (see the next section and[13]).

Thus the difference between the two pure state measures is just in the way one initially
chooses the distribution of the anglesη andα in the spaceCP3 (and inCPN in general).
Since we are most concerned with unitary operators inSU(N) acting upon pure state density
matrices and not within the more generalU(N) group, we feel that our representation of
the pure state measure is more useful with regards to the overall Euler parameterization of
SU(N) andU(N) than the one given inEq. (4.21).

4.2. Mixed-state product measure

FromEq. (4.3)we can see that, in general, one can write down the mixed-state product
measure forρ = UρdU

† as

dVms = dµ × d

(
G

H

)
, (4.23)

where dµ defines a measure in the (N − 1)-dimensional symplex of eigenvalues ofρd and
d(G/H), whereG = SU(N) andH = U(1)SU(2) × U(1)SU(3) × · · · × U(1)SU(N), defines
a “truncated” Haar measure which is responsible for the choice of eigenvectors ofρ that
ensures dµ is “rotational invariant.”
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Now as[4,5,13,16–19]and others have noted, dµ is defined via the probability distribution
induced on the (N − 1)-dimensional symplex but there can be more than one possible dµ

that is applicable for a given system since there can be more than one usable probability
distribution. As Hall noted:

. . . [I]f [mixed states] described by density operators are allowed, the requirement of uni-
tary invariance (thus there is no preferred measurement basis for extracting information)
only implies that the probability measure over the set of possible states is a function of
the density operator eigenvalue spectrum alone. Hence a unique probability measure can
be specified only via some further principle or restriction, to be motivated on physical or
conceptual grounds[20].

Therefore

An ensemble of general states of a quantum system is in general described by a proba-
bility measure over the density operators of the system. given that probability measures
transform in the same way as volume elements under coordinate transformations, and
that volume elements are in general properties of metric spaces, this suggests that the
distribution of density operators corresponding to a “minimal knowledge” (i.e. most ran-
dom ensemble of possible states) ensemble may be obtained from the normalized volume
element induced by some natural metric on the set of density matrices[20].

Thus, the volume measure is defined by the choice of metric, and since the metric is invari-
ant under unitary transformations, defining dµ comes down to determining which metric is
the most appropriate in defining a statistical distance between two density matrices; espe-
cially when one adds the additional requirement that the metric satisfy certain criteria for
entanglement measures (see for example[21–25]and references within).

Since there are multiple choices for distance measures between two density matrices,
and therefore dµ, and since we want to keep our discussion as general as possible, we shall
defer further discussion on dµ to other papers (for example those previously cited) and
just use the most general form of dµ in the spirit equation (4.3) and given in[5,17,18]and
references within; the Dirichlet distribution:

dµ = Γ(s1 + · · · + sN)

Γ(s1) · · ·Γ(sN)
Λ

s1−1
1 · · ·ΛsN−1−1

N−1


1 −

N−1∑
j=1

Λj




sN−1

dΛ1 · · · dΛN−1,

(4.24)

where
∑

Λj = 1 and 1> Λj > 0 are just the eigenvalues ofρd. The Dirichlet distribution
provides a means of expressing quantities that vary randomly, independent of each other,
yet obeying the condition that there sum remains fixed. In our case,sj ≡ s > 0 thus

dµ = Γ(Ns)

NΓ(s)
Λs−1

1 · · ·Λs−1
N dΛ1 · · · dΛN = αsΛ

s−1
1 · · ·Λs−1

N dΛ1 · · · dΛN, (4.25)

where the ranges for theΛj, we conjecture, are equal to

1 ≥ ΛN ≥ 1

N
and 0≤ Λ2, . . . , ΛN−1 ≤ 1

N
. (4.26)
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These ranges disagree with those given by Slater in[26] for N = 4 but under integration,
the difference between those in[26] and ours is a multiplicative factor ofN upon the kernel.
The benefit of the ranges given here is that they are easily generalized, while those in[26]
are not.

With dµ so defined, we are now free to look at the flag manifoldG/H . By usingEqs. (2.2)
and (2.7)we can see that the cosetG/H can be expressed as

G

H
= SU(N)

U(1)SU(2) × U(1)SU(3) × · · · × U(1)SU(N)

=
∏

N≥m≥2

(∏
2≤k≤m A(k, j(m))

)
eiλ3αN2−(N−1) · · · eiλ

(N−1)2−1αN2−2 eiλ
N2−1αN2−1

eiλ3αN2−(N−1) · · · eiλ
(N−1)2−1αN2−2 eiλ

N2−1αN2−1

=
∏

N≥m≥2


 ∏

2≤k≤m

A(k, j(m))


 , (4.27)

whereA(k, j(m)) is defined inEq. (2.7). This coset representation comes from the following
observation; it allows us to write down the “truncated” Haar measure d(G/H) as

d

(
G

H

)
= d

(
SU(N)

U(1)SU(2) × U(1)SU(3) × · · · × U(1)SU(N)

)

= dVSU(N)

dVU(1)SU(2) × dVU(1)SU(3) × · · · × dVU(1)SU(N)

= KSU(N) dαN2−1 · · · dα1

dαN2−(N−1) · · · dαN2−1
= KSU(N)dαN(N−1) · · · dα1, (4.28)

where from[1]:

KSU(N) =
∏

N≥m≥2


 ∏

2≤k≤m

Ker(k, j(m))


 ,

Ker(k, j(m)) =




sin(2α2+j(m)), k = 2,

cos(α2(k−1)+j(m))
2k−3 sin(α2(k−1)+j(m)), 2 < k < m,

cos(α2(m−1)+j(m)) sin(α2(m−1)+j(m))
2m−3, k = m

(4.29)

andj(m) is fromEq. (2.7).
Now the ranges for theα’s can again be either thecoveringranges defined for the first

N(N − 1) α’s of the Euler parameterization ofSU(N) (see[1]) or theSU(N)/ZN ranges:

0 ≤ α2j ≤ π

2
, 0 ≤ α2j−1 ≤ π for 1 ≤ j ≤ N(N − 1)

2
, (4.30)

which would necessitate adding a normalization factor of 2(N−1)(N−2)/2 to KSU(N) in
Eq. (4.28).
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Depending on which set of ranges are used, a general mixed-state product measure can
thus be written as

dVms= αsΛ
s1−1
1 · · ·ΛsN−1−1

N−1


1 −

N−1∑
j=1

Λj




sN−1

dΛ1 · · · dΛN−1

× ξ · KSU(N)dα1 · · · dαN(N−1), (4.31)

where theΛi are thenon-zeroeigenvalues of the correspondingN-dimensional diagonal
density matrixρd (see[1,4,5,11,13,26,27]for more details) andξ is the necessary nor-
malization constant (equal to 1 if one uses the covering ranges forSU(N) and equal to
2(N−1)(N−2)/2 if one uses the genericSU(N)/ZN coset ranges used in calculating the group
volume[1,2]).

4.2.1. Example calculation: two qubit mixed-state product measure
For two qubits,Eqs. (4.23), (4.25) and (4.28)yield

dVms= dµ × d

(
SU(4)

U(1)SU(2) × U(1)SU(3) × U(1)SU(4)

)

= αsΛ
s−1
1 Λs−1

2 Λs−1
3

(
1 −

3∑
i=1

Λi

)s−1

dΛ1 · · · dΛ3 × ξ · KSU(4) dα12 · · · dα1

= αsΛ
s−1
1 Λs−1

2 Λs−1
3 Λs−1

4 dΛ1 · · · dΛ4

× ξ · sin(2α2) sin(α4) cos(α4)
3 sin(α6)

5 cos(α6)

× sin(2α8) sin(α10)
3 cos(α10) sin(2α12)dα12 · · · dα1, (4.32)

where we have used theSU(4) differential volume element from[2] in the last step. The
ranges of integration for theαi parameters has already been discussed; ideally they should
be thecoveringranges forSU(4) from [2] so thatξ = 1. As for the ranges on dµ, recall
that for two qubits,ρd is given by[1,2]:

ρd =




sin2(θ1) sin2(θ2) sin2(θ3) 0 0 0

0 cos2(θ1) sin2(θ2) sin2(θ3) 0 0

0 0 cos2(θ2) sin2(θ3) 0

0 0 0 cos2(θ3)


 ,

(4.33)

where
π

4
≤ θ1 ≤ π

2
, cos−1

(
1√
3

)
≤ θ2 ≤ π

2
,

π

3
≤ θ3 ≤ π

2
, (4.34)

thus we have

1 ≥ Λ4 ≥ 1
4, 0 ≤ Λ1 ≤ 1

4, 0 ≤ Λ2 ≤ 1
4, 0 ≤ Λ3 ≤ 1

4 (4.35)

for the ranges of integration on dµ. Notice that one could have also usedEq. (4.26)with
N = 4 to achieve these ranges, but it is instructive to see their explicit derivation.
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5. Volume of CPN and SU(N)/(U(1))N−1

Now we are in a position to give two different methods for calculating the volume for the
pure and mixed-state manifolds of generalN-dimensional quantum systems. The pure state
manifold volume is quite simple and already well known; it is the volume ofCPN , while
the mixed-state manifold volume, as we have seen in the previous section, is the product of
two different measures—one of which is dependent on the initial distribution of states on
the (N − 1)-dimensional symplex. Therefore in the mixed-state case we shall only worry
about calculating the volume contribution from the second measure; the “truncated” Haar
measure, since the volume from theN − 1 symplex measure can be equated to a general
multiplicative constant determined by the initial distribution of states on theN −1 symplex
(see for example[26]):

Vmixed states= Vsymplex× VSU(N)/(U(1))N−1 = ωVSU(N)/(U(1))N−1. (5.1)

For example, for the two qubit case described previously, a naive calculation ofω can be
seen to be equal to:

ω = αs

∫ 1

1/4

∫ 1/4

0

∫ 1/4

0

∫ 1/4

0
Λs−1

1 Λs−1
2 Λs−1

3 Λs−1
4 dΛ1 dΛ2 dΛ3 dΛ4

= Γ(4s)

4Γ(2)

(
4−4s(−1 + 4s)

s4

)
(5.2)

for whens > 0 (note that the integration ranges onΛ4 were reversed in order to keepω
positive).

5.1. Volume ofCPN

Using the results forU(N) we can immediately write down the general volume forCPN .
UsingEqs. (2.1), (3.1) and (3.4)we have

VCPN = VSU(N+1)

VU(N)

= 2N/2πN(N+3)/2
√
N + 1

∏N
k=1(1/k!)

2N/2πN(N+1)/2
√
N + 1

∏N−1
k=1 (1/k!)

= πN

N!
. (5.3)

We see that this result also comes from the integration ofEq. (4.7)over the ranges given in
Eq. (4.9)or Eq. (4.10):

∫
· · ·
∫
α ranges


 ∏

2≤k≤N+1

Ker(k, j(N + 1))


 dα2N · · · dα1

= 2N−1πN
∏

2≤k≤N+1

V(k,N + 1), (5.4)

whereV(k,N + 1) is, from[1]:

V(k,N + 1) =



1, k = 2,
1

2(k − 1)
, 2 < k ≤ N + 1.

(5.5)
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Expansion of this product yields∏
2≤k≤N+1

V(k,N + 1) = 1 × 1

4
× 1

6
× · · · × 1

2N
= 1

2N−1N!
(5.6)

which when multiplied by the 2N−1πN factor gives the volume forCPN as previously
calculated. One can also see that integration ofEq. (4.21)using the ranges given forη in
Eq. (4.11)will also generateEq. (5.3)(see[13] for example).

We should also note the remarkable results:

∞∑
n=0

Vol(CPn) =
∞∑
n=0

πn

n!
= eπ ≈ 23.147, lim

k→∞

k∏
n=0

Vol(CPn) → 0. (5.7)

Thus, in terms of our pure state manifold discussion, we can conclude that as one increases
the dimensionality of the system, there will always be a non-zero pure state volume. In the
spirit of this result we should also note an interesting introduction to the importance of the
pure state manifoldCPN for largeN, especially with regard to quantum entanglement, can
be found in[28].

5.2. Volume of SU(N)/(U(1))N−1

Recall that the action of a group in the adjoint representation produces interesting orbits;
the manifolds of which are calledgeneralized flag manifolds, and appear very often in
geometric quantization, density matrices, entangled states, etc. These manifolds can be
represented by the cosetSU(N)/U(1)N−1; obviously then the volume of such manifolds
are quite important to our work. By usingEqs. (3.2) and (4.4)we can write down the general
volume for such a coset,SU(N)/U(1)SU(2) × U(1)SU(3) × · · · × U(1)SU(N), as

V

(
SU(N)

U(1)λ3 × U(1)λ8 × . . . × U(1)λ
N2−1

)

= VSU(N)

VU(1)λ3
× VU(1)λ8

× · · · × VU(1)λ
N2−1

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2π ∗ √
3π ∗ · · · ∗ π

√
2N/(N − 1)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)∏N−1
l=1 π

√
2(l + 1)/ l

= πN(N−1)/2
√
N
∏N−1

k=1 (1/k!)∏N−1
l=1

√
(l + 1)/ l

.

(5.8)

But we know

N−1∏
l=1

√
l + 1

l
=
√

2

1
∗
√

3

2
∗ · · · ∗

√
N

N − 1
= √

N. (5.9)
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Thus we can see that

V

(
SU(N)

U(1)λ3 × U(1)λ8 × · · · × U(1)λ
N2−1

)
= πN(N−1)/2

N−1∏
k=1

(
1

k!

)
, (5.10)

which is in agreement with[3]. This volume can also be generated via integrating the
“truncated” Haar measure, using the appropriate ranges and normalization conditions, given
in Eq. (4.28)(done in detail in[1]).

For completeness, and withEq. (4.5)in mind, we should note the following:

πN(N−1)/2 ≡
N−1∏
k=1

πk. (5.11)

ThusEq. (5.10)has the following, equivalent representation:

V

(
SU(N)

U(1)λ3 × U(1)λ8 × · · · × U(1)λ
N2−1

)

= πN(N−1)/2
N−1∏
k=1

(
1

k!

)
=

N−1∏
k=1

πk

k!
=

N−1∏
k=1

VCPk . (5.12)

So the volume of our flag manifold is nothing more than the product of the volumes of the
complex projective spaceCPk wherek ≤ N [3]. Notice also that asN increases the volume
of the flag manifold approaches, butnever equals, zero (seeEq. (5.7)). It is an asymptotic
limit which converges to zero from the left onR

1. Thus, since oneusuallychooses a non-zero
probability distribution on theN−1 symplex defining dµ (seeEq. (4.25)), we can conclude
that, as in the pure state case, the mixed-state volume measure will never equal zerounless
Vsymplexdoes!

6. Other SU(N) and U(N) coset volumes

Beyond the full pure and mixed-state manifolds there are numerous other sub-manifolds
that are of interest in physics; the volumes of which have already been calculated (see, for
example[3,10,19,29–31]and references within). These sub-manifolds and their volumes
give us both a way to confirm our methodology, as well as offering a systematic, rather
than numeric, way of computing such quantities. From this work, we will then be able to
calculate the manifolds that contain the set of entangled and mixed states (either pure or
mixed) for specific quantum systems[32]. It should be understood though that the following
volume calculations are specific to theSU(N) andU(N) Euler angle parameterization that
we have developed and its corresponding normalizations via the Cartan subalgebra being
used. The general question of volume normalization of a manifold, especially when one
begins to talk about coset manifolds with specific elements of the Cartan subalgebra being
removed will be the subject of a future paper.
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6.1. Volume of SU(N)/SU(P) × SU(Q)

To begin, we would like to be able to write down the general volume of theSU(N)/SU(P)×
SU(Q) coset whereN + 1 ≥ P + Q andP,Q �= 1. To do this we can useEq. (3.1)to
generate

VSU(N)

VSU(P) × VSU(Q)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2(P−1)/2π(P−1)(P+2)/2
√
P
∏P−1

k=1 (1/k!)

× 2(Q−1)/2π(Q−1)(Q+2)/2√Q
∏Q−1

k=1 (1/k!)

= 2((N+1)−(P+Q))/2π(N(N+1)−P(P+1)−Q(Q+1)+2)/2

×
√

N

PQ

N−1∏
k=1

(
1

k!

) P−1∏
k=1

k!
Q−1∏
k=1

k!. (6.1)

WhenN + 1 = P + Q we have

VSU(N)

VSU(P) × VSU(Q)

= 2((N+1)−(N+1))/2π((P+Q−1)(P+Q)−P(P+1)−Q(Q+1)+2)/2

×
√

P + Q − 1

PQ

P+Q−2∏
k=1

(
1

k!

) P−1∏
k=1

k!
Q−1∏
k=1

k! = π(P−1)(Q−1)

×
√

P + Q − 1

PQ

P+Q−2∏
k=1

(
1

k!

) P−1∏
k=1

k!
Q−1∏
k=1

k!. (6.2)

6.1.1. Example calculation: volume of SU(4)/SU(2) × SU(2)
Defining N = 4, andP = Q = 2, we get fromEq. (6.1)the volume of the coset

SU(4)/SU(2) × SU(2):

VSU(4)

VSU(2) × VSU(2)
= 2(5−4)/2π(4(5)−2(3)−2(3)+2)/2

√
4

(2)(2)

4−1∏
k=1

(
1

k!

) 2−1∏
k=1

k!
2−1∏
k=1

k!

=
√

2 ∗ π5 ∗ 1

3!
∗ 1! ∗ 1! = π5

6
√

2
. (6.3)

Which is equivalent to the volume ofSU(4),
√

2π9/3, divided by the square of the volume
of SU(2),2π2, as expected. It should also be noted that this is the volume of the manifold
that is comprised of allnon-localtransformations which can be implemented on a two qubit
system.

6.2. Volume of SU(N)/U(P) × U(1)

Beyond the general volume ofCPN , general flag manifold, and the previousSU(N) coset,
we would like to be able to write down the general volume of theSU(N)/U(P)×U(1) coset
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whereN − 1 ≥ P + 1 andP �= 1. To do this we can useEqs. (3.1) and (3.4)as follows:

VSU(N)

VU(P) × VU(1)
= 2(N−1)/2π(N−1)(N+2)/2

√
N
∏N−1

k=1 (1/k!)

2P/2πP(P+1)/2
√
P + 1

∏P−1
k=1 (1/k!) × VU(1)

. (6.4)

The problem we now face is how to defineU(1). If we useEq. (3.2), here now defined for
SU(N), we would generate

VSU(N)

VU(P) × VU(1)SU(N)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2P/2πP(P+1)/2
√
P + 1

∏P−1
k=1 (1/k!) ∗ π

√
2N/(N − 1)

= 2(N−1)/2π(N−1)(N+2)/2
√
N − 1

∏N−1
k=1 (1/k!)

2(P+1)/2π(P2+P+2)/2
√
P + 1

∏P−1
k=1 (1/k!)

= 2((N−1)−(P+1))/2π((N2+N−2)−(P2+P+2))/2

×
√

N − 1

P + 1

N−1∏
k=1

(
1

k!

) P−1∏
k=1

k!. (6.5)

If we demand thatN − 1 = P + 1, we can simplify the product terms:

N−1∏
k=1

(
1

k!

) P−1∏
k=1

k! =
P+1∏
k=1

(
1

k!

) P−1∏
k=1

k!

= 1! ∗ 2! ∗ · · · ∗ (P − 2)! ∗ (P − 1)!

1! ∗ 2! ∗ · · · ∗ (P − 2)! ∗ (P − 1)! ∗ P ∗ (P + 1)!

= 1

P !(P + 1)!
(6.6)

as well as the powers and other factors. Therefore, for this case we have

VSU(N)

VU(P) × VU(1)SU(N)

= 2((N−1)−(P+1))/2π((N2+N−2)−(P2+P+2))/2

P !(P + 1)!

√
N − 1

P + 1

= π2N−3

(N − 2)!(N − 1)!
= π2P+1

P !(P + 1)!
. (6.7)

Depending on which parameter is used.
Now, if in usingEq. (3.2), we now defineU(1) for SU(M),M < N, we would generate

VSU(N)

VU(P) × VU(1)SU(M)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2P/2πP(P+1)/2
√
P + 1

∏P−1
k=1 (1/k!) ∗ π

√
2M/(M − 1)

= 2((N−1)−(P+1))/2π((N2+N−2)−(P2+P+2))/2

×
√

N(M − 1)

M(P + 1)

N−1∏
k=1

(
1

k!

) P−1∏
k=1

k! (6.8)
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and if we demandN − 1 = P + 1, we can simplify, yielding

= 2((N−1)−(P+1))/2π((N2+N−2)−(P2+P+2))/2

P !(P + 1)!

√
N(M − 1)

M(P + 1)

= π2N−3

(N − 2)!(N − 1)!

√
N(M − 1)

M(N − 1)
, (6.9)

which reduces toEq. (6.7)whenM = N. Therefore, depending on whichU(1) we use, we
will generate a different volume; the ratio between any two being equal to

VSU(N)/VU(P) × VU(1)SU(X)

VSU(N)/VU(P) × VU(1)SU(Y)

=
√

Y(X − 1)

X(Y − 1)
. (6.10)

6.2.1. Example calculation: volumes of SU(4)/U(2) × U(1)SU(i) for i = 2,3,4
DefiningN = 4 andP = 2 (thus satisfyingN − 1 = P + 1) we get fromEq. (6.9)the

volume of the cosetSU(4)/U(2) × U(1)SU(i) wheni = 2:

VSU(4)

VU(2) × VU(1)SU(2)

= π2∗4−3

(4 − 2)!(4 − 1)!

√
4(2 − 1)

2(4 − 1)
= π5

12

√
2

3
= π5

6
√

6
, (6.11)

wheni = 3

VSU(4)

VU(2) × VU(1)SU(3)

= π2∗4−3

(4 − 2)!(4 − 1)!

√
4(3 − 1)

3(4 − 1)
= π5

12

√
8

9
= π5

9
√

2
(6.12)

and wheni = 4 the volume of the cosetSU(4)/U(2) × U(1)SU(4), usingEq. (6.7)now, is

VSU(4)

VU(2) × VU(1)SU(4)

= π2∗4−3

(4 − 2)!(4 − 1)!
= π5

12
. (6.13)

6.3. Volume of SU(N)/U(P) × U(Q)

Now we would like to be able to write down the general volume of theSU(N)/U(P) ×
U(Q) coset forN − 1 ≥ P + Q andP,Q �= 1. To do this we can useEqs. (3.1) and (3.4)
as follows:

VSU(N)

VU(P) × VU(Q)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2P/2πP(P+1)/2
√
P + 1

∏P−1
k=1 (1/k!)

× 2Q/2πQ(Q+1)/2√Q + 1
∏Q−1

k=1 (1/k!)

. (6.14)
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Simplification yields

VSU(N)

VU(P) × VU(Q)

= 2(N−1)/2π(N−1)(N+2)/2
√
N
∏N−1

k=1 (1/k!)

2(P+Q)/2π(P(P+1)+Q(Q+1))/2
√

33

× (P + 1)(Q + 1)
∏P−1

k=1 (1/k!)
∏Q−1

k=1 (1/k!)

= 2((N−1)−(P+Q))/2π((N−1)(N+2)−P(P+1)−Q(Q+1))/2

×
√

N

(P + 1)(Q + 1)
×

N−1∏
k=1

(
1

k!

) P−1∏
k=1

k!
Q−1∏
k=1

k!. (6.15)

For the special case whenN−1 = P+Qwe can go further and eliminate theN dependence
in the above volume, thus yielding (in one possible representation):

VSU(N)

VU(P) × VU(Q)

= πP+Q+PQ

√
P + Q + 1

(P + 1)(Q + 1)

P+Q∏
k=1

(
1

k!

) P−1∏
k=1

k!
Q−1∏
k=1

k!

= πP+Q+PQ

√
P + Q + 1

(P + 1)(Q + 1)

P+Q∏
k=P

(
1

k!

)Q−1∏
k=1

k!. (6.16)

6.3.1. Example calculation: volume of SU(9)/U(4) × U(4)
DefiningN = 9, andP = Q = 4, thus satisfyingN−1 = P+Q, we get fromEq. (6.16)

the volume of the cosetSU(9)/U(4) × U(4) to be equal to

VSU(9)

VU(4) × VU(4)
= π(4+4+4∗4)

√
4 + 4 + 1

(4 + 1)(4 + 1)

4+4∏
k=4

(
1

k!

) 4−1∏
k=1

k

= π24

58 525 286 400 000
,

(6.17)

which is what one would get if they usedEqs. (3.1) and (3.4)separately.

6.4. Volume of SU(N)/
∏x

i=1 U(Pi) ×∏y

j=1 U(1)SU(Zj)

We are now ready to write down the volume for the most general of cosets that we are
interested in,SU(N)/

∏x
i=1 U(Pi) ×∏y

j=1 U(1)SU(Zj), where

x∑
i=1

Pi +
y∑

j=1

1 =
x∑

i=1

Pi + y ≤ N − 1, Pi �= 1 (6.18)

and

U(1)SU(Zj) ∈ {U(1)SU(2), U(1)SU(3), . . . , U(1)SU(N)}, (6.19)

where there is no necessary order in the sequential choice ofU(1)SU(Zj).
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To begin we note the following usingEq. (3.4):

V

(
x∏

i=1

U(Pi)

)
=

x∏
i=1

VU(Pi) =
x∏

i=1

(
2Pi/2πPi(Pi+1)/2

√
Pi + 1

Pi−1∏
k=1

(
1

k!

))

= 2
∑x

i=1 Pi/2π
∑x

i=1 Pi(Pi+1)/2
x∏

i=1

(√
Pi + 1

Pi−1∏
k=1

(
1

k!

))
. (6.20)

We also can simplify the second volume of the three we need via generalizingEq. (3.2):

V


 y∏

j=1

U(1)SU(Zj)


 =

y∏
j=1

VU(1)SU(Zj)
=

y∏
j=1

π

√
2Zj

Zj − 1
= πy2y/2

y∏
j=1

√
Zj

Zj − 1
.

(6.21)

We are now in a position to write down the volume forSU(N)/
∏x

i=1 U(Pi) × ∏y

j=1
U(1)SU(Zj). UsingEqs. (3.1), (6.18), (6.20) and (6.21)we have

V

(
SU(N)∏x

i=1 U(Pi) ×∏y

j=1 U(1)SU(Zj)

)

= 2(N−(1+y+∑x
i=1 Pi))/2π((N−1)(N+2)−(2y+∑x

i=1 Pi(Pi+1)))/2

×√
N

∏N−1
k=1 (1/k!)

∏y

j=1

√
(Zj − 1)/Zj∏x

i=1

(√
Pi + 1

∏Pi−1
k=1 (1/k!)

) . (6.22)

For the special case when the “≤” in Eq. (6.18)is replaced by “=” we have

V

(
SU(N)∏x

i=1 U(Pi) ×∏y

j=1 U(1)SU(Zj)

)

= π((N−1)(N+2)−(2y+∑x
i=1 Pi(Pi+1)))/2 × √

N

∏N−1
k=1 (1/k!)

∏y

j=1

√
(Zj − 1)/Zj∏x

i=1

(√
Pi + 1

∏Pi−1
k=1 (1/k!)

) .

(6.23)

One could continue simplifyingEq. (6.22)but it would be only worthwhile if additional
knowledge concerningZj andPi was available.

6.5. Grassmann volume

The general Grassmann manifolds, of whichCPN is a special case (seeEq. (4.2)), have
the following definition forN ≥ M:

G(N,M) = U(N)

U(M) × U(N − M)
. (6.24)
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Using Eq. (3.4)we can write down the general expression for the volume ofalmostany
Grassmann manifold:

VG(N,M) = VU(N)

VU(M) × VU(N−M)

= 2N/2πN(N+1)/2
√
N + 1

∏N−1
k=1 (1/k!)

2M/2πM(M+1)/2
√
M + 1

∏M−1
k=1 (1/k!)

× 2(N−M)/2π(N−M)(N−M+1)/2
√
N − M + 1

∏N−M−1
k=1 (1/k!)

= πM(N−M)

√
N + 1

(M + 1)(N − M + 1)

N−1∏
k=1

(
1

k!

)M−1∏
k=1

k!
N−M−1∏

k=1

k!

= πM(N−M)

√
N + 1

(M + 1)(N − M + 1)

N−1∏
k=M

(
1

k!

)N−M−1∏
k=1

k!. (6.25)

The reason for the “almost” above is that forM = 1 we do not regain the volume forCPN−1

that we originally calculated inEq. (5.3):

VCPN−1 ≡ VG(N,1) = πN−1

√
N + 1

(1 + 1)(N − 1 + 1)

N−1∏
k=1

(
1

k!

)N−1−1∏
k=1

k!

= πN−1

√
N + 1

2N

N−1∏
k=1

(
1

k!

)N−2∏
k=1

k! = πN−1

(N − 1)!

√
N + 1

2N
�= πN−1

(N − 1)!
.

(6.26)

We are “off” by a factor of
√
(N + 1)/2N which occurs because of the following reason:

Eq. (3.4), forN = 1, yields 2π which is correctif one is looking for the volume of theSU(2)
variant ofU(1) (seeEq. (3.2)for N = 1), but that isnotthe case for theU(1) components of
greaterSU(N) groups (again seeEq. (3.1)for N ≥ 2), which is the case here. InEq. (6.26)
we get the factor of 2π from theU(1) component, but without the additional contraction
term due to theλN2−1 Cartan subalgebra component ofU(N) from which theU(1) term is
defined!

The flaw inEq. (6.26)can also be seen fromEq. (4.2):

CPN−1 ≡ G(N,1) = U(N)

U(1) × U(N − 1)
= SU(N) × U(1)

U(1) × U(N − 1)
= SU(N)

U(N − 1)
.

(6.27)

TheU(1) term in the numerator is the same as theU(1) term in the denominator and as
such, in any representation, cancels out, thus leaving the standard coset relationship for
CPN−1 which, fromEq. (5.3), does yield the correct volume forCPN−1. Therefore, if we
useEq. (3.2)for theU(1) term in Eq. (6.25)(combined withEq. (3.4)for the other two
terms) whenM = 1, we will generate the correct volume forCPN−1:
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VG(N,1) = VU(N)

VU(1) × VU(N−1)

= 2N/2πN(N+1)/2
√
N + 1

∏N−1
k=1 (1/k!)

π
√

2(N + 1)/N × 2(N−1)/2π(N−1)(N)/2
√
N
∏N−2

k=1 (1/k!)

= πN−1

(N − 1)!
. (6.28)

Therefore, in general, if we demand thatM �= 1 thenEq. (6.25)will correctly produce the
Grassmann manifold volumes (see[3] and references within).

7. Conclusion

Using the volume equations given herein, we are now in a position to explicitly write
down the measures and volumes for the whole range of manifolds which occur in discussions
concerning separability and entanglement of multi-particle systems. Therefore, this work
allows us to explicitly write down the volumes of the manifolds of the local orbits of a given
state|ψ〉 with respect to some transformationU ∈ SU(N) (or more generallyU(N)), in a
manner that we hypothesize also elucidates the topology of the manifolds as well[3,31].
Applications beyond quantum information theory are also possible[3].
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